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Multiple experiments on macroscopically identical 3D carbon-carbon (C/C) '{A
composite specimens show that the fracture behavior displays the main features ’
of a stochastic process which reflects the random nature of the strength "
field. The critical load is random and a sample set of crack trajectories dis- .'._ e
plays a Poisson's type diffuse character. Crack trajectories are unique for .
each individual experiment (no two coincide). The crack appears to propagate ; o
stepwise (a sequence of local failures) through s random field of defects Lt
which is constrained by the orthotropic architecture of the yarn bundles. As =
such, the strength field cannot be approximated by a single parameter, a )pe- e
cific fracture energy 2y=J,.. o / I~
. // ::.
In our previous report, we presented the mathematical foundation of a ety
probilistic model of brittle crack formation. . The model combines the concepts <
and formalism of conventional fracture mechanics with the concepts and formal- o
ism of stochastic processes. The strength field, if.e., the specific fracture Q .:",
energy 2y=J, . in fracture mechanics, is now considered as a fluctuating field S
which is deséribed by a pointwise Wiebull distribution F(y), the correlation B
distance r_and the crack diffusion coefficient. Several refinemeats of the '&C_
model are fntroduced. The probability that a crack propagates along a speci- RN
fic path, "chosen" from all possible paths, from an initial point to a final ‘.
point is introduced through the "crack  propagator" concept. Of course, the f-j
crack diffusion coefficient uniquely determines the set of all possible crack '; ::‘.
paths. Equations are derived to predict the probability of crack penetration >
depth in terms of the energy release rate (stress-strain distribution), the :z%-
crack diffusion coefficient and the correlation distance (statistical features »LN
of the strength field) for stable (crack arrest) and unstable (critical crack) L]
configurations. :%:‘
\
Guided by these theoretical developments, an experimental methodology is Q i.:
designed to evaluate the parameters called upon by the theory and to examine N !
its predictive power. A model material whose fracture behavior is well under- Ve
stood (PMMA) was used. The experiment employs crack arrest (stable) configura- e
tion. From the statistical characteristics of the load (or displacement) and :;:
crack arrest length, and the correlation distance (defined from fractographic W
exam\ination), the strength field parameters Yave and a are deduced from the :-.f:\"
proposed model. }_-_‘*
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1. Introduction

Fracture mechanics delivers the methodology to compensate the
inadequacies of conventional design concepts based on tensile
strength, yield strength or buckling stress particularly when there
is the likelihood of cracks. At present, fracture mechanics concepts
are well developed and standard procedures are established to
determine fracture toughness parameters on the basis of linear
elastic or nonlinear theories. Both theories deal with homogeneous,
isotropic materials whose strength field may be well apbroximated by
a single (fracture toughness) parameter , be it the critical stress
intensity factor Kj. or the critical energy release rate J1c+ Carbon-
carbon composites do not fit this description. The course orthotropic
texture of the relatively large yarn bundles coupled with the extreme
anisotropy of the graphitic matrix play a major role in determining
the microstructural character and behavior of the composite. An
important consequence of such anisotropy is the microcracking network
induced by thermal stresses during manufacturing [1, 2]. These
microstructural complexities violate the fundamental assumptions of a
continuum upon which fracture mechanics is founded. The few reported
studies which attempted to characterize the fracture resistance of
carbon-carbon composites [3-9] attest to the inappropriateness of the
conventional fracture mechanics methods. In this regard, the need
concluded by Jortner, in a recent symposium on Thermomechanical
Behavior of High Temperature Composite [10], for innovative mathematical

modeling ought to be addressed.
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The very nature of carbon-carbon composite indicates that the Mo
. . [ J
strength field is heterogeneous and can not be characterized by a el
i
single parameter. Recognizing this basic fact, we introduced the ot
basic mathematical structure of a probabilistic model for brittle crack ’ "
propagation in our previous report. The physical assumption ¥
"N.
»
underlying our approach is that brittle fracture of solids is ;}f:
'Y
o~
controlled by a random field of microdefects. The strength of such kﬁjt
2L
a field, i.e., the specific fracture energy 2Y in conventional fracture ~’V
:
¢
mechanics, is now considered as a random field. The crack advances M)
O
Mty
through the weakest '"links" in the random field. It results in a ﬁ@é'
randomly tortuous crack trajectory. The crack diffusion coefficient "
S
» "'.‘
is introduced as an integral characteristic of such tortuosity [11-13]. SN
20
Since the crack propagates through the weakest "links", the ?S};
values of y-field along an actual crack trajectory represent minima :
(3;\‘,(
in the specific fracture energy. This, in accordance with the :Af
statistics of extremes, suggest a Wiebull distribution for Y at every o
. . . . . L
point of the crack trajectory. The distribution is characterized by oy
Ne'd
has
W,
l‘.‘l
three parameters: Ypins Ygye and o, the shape parameter. The values 5%*
Wi
of v at two different points are generally described by a joint Efm
. . . . . .
distribution function. However, when the two points are separated A
t
by a distance r >r,, the values of y at the two points are mutually ﬁgﬁ’
independent. The distance r, is the correlation distance. Yy
X
. . s @
Chudnovsky and Kunin derived the probability of crack penetration :

depth under a specified displacement in terms of the strength field
parameters and the energy release rate [11]. An experiment was

designed to examine the validity of the proposed theory. Results of
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these experiments are discussed in Chapter III. In this Chapter, the
phenomenological features of crack propagation in 3D C/C composites

are described. These results are sought to assess the applicability of
the proposed theoretical model and to guide further refinement of the
theory.

2, Materials and Testing

Two carbon~carbon composites were considered in this work. Both
materials are three dimensions C/C composites. They are G20-6G after
graph. 7 and G20-4G after graph. 5, obtained from the Aerospace
Corporation. The average thickness for each billet is about %". The
G20-6G is a higher density composite while the G20-4G is a lower density.

Different specimen geometries such as compact tension and tapered
double cantilever beam were attempted to carry out fracture tests on the
3-D carbon composites. In spite of reinforcing the holes of the
specimen, failure occurred at the grips. A three-point bend specimen
under monotonic loading was then chosen to conduct the fracture testing.
The test specimens were machined into 56 X 14 mm beams from the billet
sections as illustrated in Fig. 1. A 0.38 mm thick milling cutter was
used to introduce a 3mm notch at the middle of each specimen,

Fracture testing was carried out at room temperature using an MIS
testing system equiped with a 1 kip load cell. The test was run using
displacement control with a cross-head speed of 50u/min. A specially
designed Instron stiff steel load fixture was used to insure minimum
machine compliance.

The load versus the load-point displacement (LPD) curves were

generated by continuously monitoring the load and crosshead displacement
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during tests. A clip gauge was also used to monitor the load versus

the crack opening displacement (COD). Both load vs, LPD and load vs.
COD curves were plotted instantaneously during the tests on X-Y plotters.
The data were also digitized and stored using a digital computer system
attached to the testing machine.

The tip of the notch was viewed using a travelling optical
microscope. A video system was attached to the microscope in order to
obtain interval records of crack propagation and to record any damage
events which could be observed.

Nine macroscopically identical specimens of the composite B7 as
well as five specimens of composite BS were fractured under identical
test conditions.

One test on composite BS was stopped after a first major drop in
the load was observed. The sample was then examined using SEM to
identify the damage events associated with that drop in the load.

3. Results

A typical load vs. LPD curve for both composites is shown
schematically in Fig. 2. Actual load vs. LPD and load vs. COD curves
for one sample of the B7 composite are shown in Figures 3 and 4,
respectively. Both curves exhibit the same trend. At the beginning
there is a linear portion followed by another of increased nonlinearity.

After a peak is reached at P, and A,, major damage events appear to

2 2
have occurred causing successive load drops (Figures 3 and 4). Each

load drop is preceded by an approximately constant load plateau.
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A histogram of maximum loads P2 and the corresponding displacement
A2 of the nine identical specimens of the B7 composite is shown in Fig. 5.
The wide scatter, again, attests to the random nature of the strength
field.

SEM observations reveal the tortuous nature of the fracture path
and how is it dictated by the material's architecture. Figure 6 displays
a composite micrograph showing the entire fracture path of one of the B7
composite specimens. The crack appears to have advanced by a series

of discrete steps involving interlaminar and cross laminar fracture

processes. In other words, the crack diffusion into the random field is

constrained by the yarn bundles. Interlaminar fracture proceeds until

"a weak link" in the yarn permits a cross laminar advance.

Although a final drop of the load-displacement curve indicated
ultimate failure, the two halves of the specimen remained together
(Fig. 6). This indicates that the fracture "surface" is not traction
free; a feature that deviates from the basic concepts of fracture
mechanics. Mechanical interlocking and yarn pull-out resistance appear

to play a role in the fracture processes,

To ascertain the crack path in Fig. 6, the same specimen was separated

manually and one half was re-examined in the scanning electron microscope.
A micrograph of this half is shown in Fig. 7. The discrete "steps" of

crack advance can now be traced. The crack difussion is constrained by

the yarn bundles.
Crack trajectories at the specimen surface (side view) were observed

from shadow graphs obtained with angular illumination (% 30°). This
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procedure was followed to observe only surface projection of the crack

path. An assembly of the nine trajectories is shown in Fig. 8. These
trajectories posseés two specific discriminating features when compared
with those obtained form short fiber composite [13] or PMMA [14]. Firstly,
the diffusive crack behavior appears to be constrained (non-Brownian)

and secondly, deviation of the trajectories from the X-axis increases

up to a certain crack depth then decreases towards the loading point.

The results of Fig. 6-8 suggest further refinement of the proposed model
as will be discussed subsequently.

Specimens prepared from the B-5 composite (lower density) display
similar behavior. Typical load-displacement curves for B-7 and B-5
are plotted in Fig. 9. As expected, the B-5 specimen shows similar LPD
but at lower loads. Again, this result indicates that the role of the
composite "main frame" architecture dictates the general fracture
behavior.

In an attempt to explore the fracture events associated with load-
drops, a B-5 specimen was monotonically loaded until the first load
drop occurred then was unloaded. The load vs. LPD is shown in Fig. 10
and the load vs. COD is shown in Fig., 11. The specimen was then
examined in scanning microscope. A SEM micrograph is shown in Fig, 12.
Significant crack propagation is observed. The crack initiated from
the center of the notch across a circumferential yarn bundle, inter-

facially along the first interface encountered to a certain length, at

which it propagates tortuously across yarn to be arrested there,

This exploratory experiment suggests the availability of information
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necessary to define "elementary" fracture processes responsible for the
y p

unusual load-displacement behavior.
4. Discussion

The results outlined in the previous section serve two purposes:

(1) to probe the specific nature of fracture processes in C/C composite,
and (2) to explore the type of information available from fracture
experiments.

Indeed, the strength field of C/C composite can not be approximated
by a single (fracture energyv) parameter and ought to be treated as a
random field. Hence, a probabilistic approach ought to be developed.

For this purpose, a model for brittle crack formation evolved [11].
Further refinement of the model is presented in Chapter II of this
report. Experimental procedures and analytrical methods were developed
to employ the theory. In Chapter III, the methodology of evaluating
the random field parameters from crack arrest experiments is described.

As evident from the present study, C/C composites display the main
ingredients of probabilistic (stochastic) fracture. However, the results
reveal that the material architecture imposes certain specificities which
include:

(1) The load~displacement curves of C/C composite display
characteristically discrete steps which appear to reflect failure of
individual yarn bundle or a group of yarns. Failure of an individual yarn
is considered to be an elementary event of the fracture process. The

specific energy of such events constitutes the y-field. A link between
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the statistics of the load-displacement steps and that of individual
yarn fracture ought to be established.

(2) The samble set of crack trajectories (Fig. 8) displays Poisson's
type features. In our current model Wiener's type formalism is employed
to characterize the set of all possible crack trajectories {l. This
requires reformulating the probabilistic measure y on  and establishing
integration procedure over {i.

(3) The crack path (Fig. 12) clearly shows that evaluation of the
stress-strain singularity at the crack tip, a necessary excercise to
evaluate the energy release rate along a given path, requirec the search
for an innovative technique for stress analysis. Perhaps, a brittle
lacquer or a photoelastic technique may produce useful information to

perform the required stress analysis.

5. Conclusions

(1) Fracture of C/C composite displays the main featuresof probabilistic
brittle fracture which can be described by the probabilistic model
of brittle crack formation.

(2) The crack trajectories reflect the corstrains imposed by the 3D yarn
bundles. This would require the application of Poisson's
formalism to characterize the set of possible crack trajectories.

(3) The load-displacement curve displays characteristically discrete

steps which are believed associated with elementary fracture events.
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Fig. 2 Typical load-deflection curve for 3-point bending of C/C composites
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Fig. 3 Load versus load point displacement (LPD) for one specimen

of the B~7 C/C composite
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Fig. 4 Load versus crack opening displacement (COD) for one specimen
of the B-7 C/C composite
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Fig. 5 Histogram of the max load, P2, and its corresponding LPD
for the B-7 C/C composite

T e N e e My T P S Wt S LA AL S o Tt W A T e i T T T T

(s 3 S D ¥ MOl K ol 0 N K e M P e B A B WV A ad : »

BTy A
O" 2Ll

PRI
."’-n}‘i;"*'._{

&
“"

o rryrx.l |
o Ay Ay 4y : o &

< r
1%

®q

I'd
PR




IR AR R R Y U TN LY UM N LI AN L CTVIA LY " Y e WUNJ ¥ aT0 g R a8 ! NPT AR BT RO U Y R T U

17 .':':

. ;' ‘;
gy
"es _Jt

Py

B R K
AT AR :

Fig. 6 A crack trajectory of one specimen of the B~7 C/C composite ‘%’o::

Fol o8 8 ]
LI

7L

A .'.:' .F
o

E “ﬂ;é_'.‘-.n‘
5 I,

Pt Al

o

n | s TS ] 3 ] a¥ a¥ "y N 2 A SN AT "_<‘\.r‘v . v',',' W, L7 N B W , PPl SRR o a2 WE LN w " r’v v\r\.- (
\i".‘...\\. l_.!'. NN NN . ., _.. ¥ ‘f\3-7\ PTpY v < . <,‘l‘. * (At Ln A .""" \ N\" v “ a. () g

9
£ As



MEETRE AR LR AR P IR RAAK AR PRSI NN DA WA VoY fa et ¥ 87 et BaY Rat 60" 00t NaT 0a¥ et bav 1y et bt et pavabat 02 aRat a% 0’000t ata VA a0a ANR' A" R A8 IR o¥p" oY,

s N

1Tmm o

o

Fig. 7 The upper half of the specimen in Fig. 6 after separation
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CHAPTER II

A PROBABILISTIC MODEL OF BRITTLE CRACK FORMATION, II

A. Chudnovsky and B. Kunin
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A PROBABILISTIC MODEL OF BRITTLE CRACK FORMATION, ||

A. Chudnovsky and B. Kunin
Department of Civil Engineering,
Mechanics, and Metallurgy
University of ll1linois at Chicago
Chicago, l1linois 60680

1. INTRODUCTION

The physical assumption underlying our approach is that the brittle frac-

ture of solids is controlled by a random field of microdefects. We are inter-
ested in a characterization of this field only as far, as it relates to frac-

ture phenomena. We take a random field of specific fracture energy v as a

representative characteristic of the defect population.

We address the following question: how the scatter of such macroscopical
parameters, as critical load, critical crack length, crack trajectories, etc.
are related to the statistics of the y-field. Our objective is a reconstruc-
tion of the statistical parameters of the y-field on the basis of observed

quantities.

2. CRACK PROPAGATOR

Let us consider a crack wy in a two-dimensional solid. Suppose that the

L . + , . +> > )

crack tip is at a point x {(see Fig. 1). We define crack propagator P, (x,X) v
(4] v

s
as the probability that the crack w, extends from : through another point yt

->
X.

Muitiple experiment on crack extension under macroscopically identical

R5le %

5s

conditions demonstrates that crack trajectories are unique for each individual :¢
)
experiment (no two coincide). More importantly, in a given test, any of the @
oAy
At
trajectories observed in other (macroscopically) identical tests should be i«
. v
e

v
vt
. e R A
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viewed as a priori possible. Statistical analysis of the observed crack tra-
jectories allows one to formulate assumptions about the set £ of all possi-
ble crack trajectories (connecting x and X) .

We now assume that only one crack is formed in each specimen (single path

-+ >
fracture) . Then the crack propagator P, (x, X) can be written as
(v}
I > >
P (x,X) = Z P, (x,X|w)P, {w |
wo 9 O.o I wo‘l} ()

where P, {w} is the probability that the crack 'chooses' a path w among all
. ° . -’ +
possible paths extending w, from x to X, and P, (f,flw) is the condi-
o
tional propagator, i.e., the conditional probability that the crack reaches %
if it grows along a particular w.

In a continom based model, the space § is uncountable, and so the sum

in Eq. (1) is substituted by an integral:

Pwo(I.i) "9/ P (X, X ) dus () (2)

K]
o,
N
LYY
\J'

N
oP,
N
Y

Thus determination of the crack propagator is reduced to the following tasks:
selection of an adequate crack trajectory space § and the probability meas-

ure duf{w) on Q as well, as evaluation of the conditional crack propagator

2,
5

o

-’
Pug x,X|w) .

L0
!

s
. /*. :

It is observed for typical test conditions, that a preferred direction

i

exists with respect to which the crack trajectories are graphs, §; = §;(¢;)

u A YN
v."v"l

(see Fig. 1, which represents schematically a trial set of possible crack

P

»
Iy
P 0 2 LA

o &
WM

-> -+,
extensions from x to X).

Y
.

In this paper, as in Ref. 1, we restrict ourselves to a 'diffusion'

7~

-.,:;‘-f'-.

approximation, i.e., we model crack trajectories by graphs of one-dimensional

)
I"ll'.

4

’

Brownian motion w = w(f;), x; § & < Xy, wix}) = x5, w(Xy) =X, (9;.; = {w}

¥
L4

will denote the space) and choose du (w) to be a conditional Wiener measureb

.,.
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dgpl.hn) referring to the parameter D > O, as a 'crack diffusion coeffi-
ci;nt‘ (cf. Eqs. (10a,13a)); D reflects the tendency of crack trajectories to
deviate from the El—axis and is experimentally measurableY. In the diffusion
approximation, evaluation of D uniquely determines the set of all possibf€
crack trajectories as well, as the measure du(w).

Determination of the conditional crack propagator Pwo(;';lw) depends on
the mechanism of crack growth. One can visualize various sequences of local
failures leading to the crack extension along w from ; to ;. Foliowing
Ref. 1, we consider crack formation (along w) as a sequence of local failures
immediately ahead of a current crack tip. This contrasts possibilities of
crack growth by merging with local failures that occurred away from the crack
tip.

Being concerned with brittle fracture, we adopt a Griffith type criterion
of infiniteimal crack advance along a trajectory w: at a current crack tip
position E. the potential energy release rate JG(E) should exceed the spe-
cific fracture energy 27(?).

The evaluation of P (;.;lw) based on the above criterion is the same as

o
that presented in Ref. 1. It is assumed that <« is a statistically homogene-
ous random field whose values are independent at distances exceeding certain
r, which is much smaller than the crack size. Then the probability that the
criterion of infinitesimal crack advance (J, > 2y) is met at every point of w

is given by (see Ref. 1, Appendix)

- X df
Py (oK) = exp |- J’ Pug {27 2 Ju D} —
i
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Finally, it is assumed! that values of v along possible crack trajecto-
ries represent minimal values of the y-field and therefore should obey one of
the distributions of extremies. The Weibul distribution is a natural choice,
since vy is a non-negative quantitya. Thus the distribution functibq for
is

Yo

Y Ymin\
1 - exp -] —— ’ Y 2 ‘Ymin (h)

Fly) =

0 s Y < Ymin

where Ypin 20, v, >0 and a >0 are empirical constants.

Combining Eqs. (2-4), one obtains the following expression for the crack

propagator®
[+ 4
Xy Jo (81) /2-vqin d$,
P(x,X) = exp -f exp | - —_
L > X3 Yo r (5)
X, X
xdu_fnl(w)

X, X

3. CRACK DIFFUSION EQUATIONS

The energy release rate J, (%)) is a functional of the crack trajectory
w. It can be approximated by a function J(§,,w(£)) of the crack tip coordi~
nates (see Ref. 1, p. 4126). Such an approximation allows one to represent
the functional iqtegral in Eq. (5) as the solution of a partial differential
equation. Moreover, it is known that P(;,}) given by Eq. (5) [with J (&)
substituted by J(£;,w(;))] is the solution of each of the following two

boundary value problems:

-+ -

> > 1] 2 -+ -+ 1 -+ »
ax] P(XoX) = 5 axz P(X’X) = F U( ) P(X.X) (63)
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P (x,X) (6b)
14 = 6 -
XI‘ X] (XZ x2)
P(X,X) ~ 0, as Xp * i@ Xy > x (6c)
and L
D 2 (7a)
3x‘ P(x,X) = 3 bxz P(x,X) + - Ulx) P(x,X)
P (x,X) - . (7b)
!X]' X*l 5()(2 XZ)
bsz (-XP,X) + 0 » as XZ +> t » ’ X] < x] » (7C)

-

where the 'potential' U(f)/r expresses the probability density (in §;) of
-+ ->

the crack arrest (J(&) < 2v) at a point ¢; U(¢) is directly related to the

Weibull distribution for v and is given by (see Eq. h)e and Footnote€)

J(E)/z - ‘Ymin a@
U(f) = exp | - . (8)
Yo

Apparently, U accounts for the stress-strain distribution (through the
energy release rate J), while the crack diffusion coefficient D and the cor-
relation distance r reflect only the statistical features of the fracture
processes.

We apply the above equations to two essentially different crack propaga-
tion problems.

Let us distinguish stable and unstable types of specimen-loading configu-

rations (exemplified in Fig. 2). Namely, we call a configuration stable
(unstable), if within the expected range of crack lengths the energy release
rate decreases (increases) with the crack growth. Crack arrest is expected

for a stable configuration, whereas an avalanche-like crack propagation occurs
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in an unstable case when either the crack or the load reaches certain critical
value. We turn to separate treatment of these cases.

Stable Case. Let us consider a prenotched specimen (see Fig. 2a) and the

+ L

> .
probability P{X) that a crack growing from the notch passes through X.
->
Apparently, P(X) is related to the crack propagator (note the position of the
coordinate system):

P(X) = P(0,X) . (9)

-
It is immediate from Eqs. (7a-c), that P(X) is the solution of

> D a2 P(.; LI > (102)
P (x) . s (10b)
BERIH
P(X) >0, as Xp+t® , X, >0 . (10¢)

Eq. (10a) was called 'crack'diffusion equation' in Ref. 1.

The probability density pa(;) for the arrest crack tip location can be
expressed in terms of P(;) and U(;). indeed, the probability pa(;) dX, dX,
of the crack being arrested in a vicinity dX] dX, of ; equals the probabil-~
ity P(;) dX, of reaching the vicinity times the conditional probability

-’
U(X) dX;/r of being arrested upon getting there. Hence
-+ -+ -
Pa(X) = P(X) U(X)/r ()

Unstable case. Let us consider a specimen-loading configuration with a

>
pre-existing crack w, (its tip at x) shown in Fig. 2b. By specimen's fail-
ure we mean extension of the crack to the opposite edge. The event of failure

is the sum of events consisting of crack extension to an arbitrary point
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(B.XZ). for the single path fracture, these events are mutually exclusive. 3
->
Hence the probability P, (x;o) of failure under a given load o can be
(o]

-> ';‘
expressed through crack propagator Pwo(x,(B,xz)), which represents the prob- .t‘*

ability (density in X;) of crack extension to (B,X,): - Yoo

-]

Pwo(;;v) = wao(:. (B,X;)) dX; . (12) e

oo l"‘.&‘i

->
It is immediate from Eqs. (7a-c) that P, (x;o) is the solution of (suppress- e
0

) "‘l;‘
ing o,w) ?&h

>
bx] Pix) =

L8]]

2 - 1 -+ .
o5, PO) + = UG P (133) Ne
2 r

P (x)

m
-t

(13b) ;
x= B ' s

aXZP(I)+o. as xy*t® , x;<B , (13¢) e

5
We will refer to Eq. (13a) as 'backward crack diffusion equation' (unstable Y 4
case) and to Eq. (10a) as 'forward crack diffusion equation’' (stable case). i A

Probability of failure Pwo(;;o) can also be interpreted as the distri- SR
bution of critical loads. Namely, if the precracking is given and the criti- e
cal load o

¢ is the only random variable, then its distribution function is W

given by

-b. ¥\
Fo (0) = Py_(xi0) > : (14)
)wo ° R&

The probability of failure also yields the conditional probability den-
sity pc(;) of critical crack tip location. Let us, for example, consider 35‘“
slow crack growth under fatigue or creep. Then the probability pc(;) dxy dx, Sﬁﬁ‘

that tne crack turns unstable in a vicinity of the point x equals the prob- : Ry

r &g
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->

ability h(x) dxy; that the slow crack passes through the vicinity times the
-

probability U(x) dx;/r that it is not critical within the vicinity times the
>

probability P(x;o)la that it turns unstable immediately upon leaving the

vicinity, i.e.
- > - > .
P (x) = h(x) U(x) P(x,0)/r i . (15)

-+ -+
Probability distributions pc(x) above and p,(X) (Eq. (11)) might be

called probability clouds of crack arrest and crit’:al crack tip locations,

respectively,

)

{"’
P

AL,

sy

9

- - A
. " . N % ™ n o n - P T R T T D it L R G AR AT T ULV L PR ARy
FOAMN i) 0. \ALA 0'. ..|.|-I'- NAGHAEA lqc,l W -.\. N I. .l 1 n.' .‘k -f‘_:( e \. ey Y ™ WY "



%9 ste atd it ail et A R U R R N o o S W T T P IR T SR R AV A SR AR T8 WO N TN A R AN o 04 A0 8% 8% A ", ‘ata V2 At 20 e -;'-‘
un
« 3%\ )
S

. __@®
33 .
D8 't
""‘t
REFERENCES x :3::,
oA

]A. Chudnovsky and B. Kunin, J. Appl. Phys., Vol. 62 (10), 1987. -
®This assumption is well supported by observations of crack propagation under ::}o.:i
fatigue and creep conditions. It is often not valid for impact loading. ‘::o;'.:‘
. At
e Ve
Bi. M. Gelfand and A. M. Jaglom, Russ. Math. Surv., Vol. 11, LB (1956); see ".;.::..
also Ref. 1, Section IV, first paragraph. 04
y RS
M. A. Mull, A. Chudnovsky, and A. Moet, Phil. Mag. A, Vol. 56, 3 (1987), pp. ey
L19-43; A. Chudnovsky and P. C. Perdikaris, in Fourth iInternational Confer- ...!'f
ence on Applications of Statistics and Probability in Soil and Structural ‘)";‘
Engineering, University of Florence, Italy, 1983 (Pitagora, Bologna, 1983). ’ 'J‘
2380
GM. R. Leadbetter, G. Lindgren, and H. Rootzen, Extremies and Related Proper- oAy
ties of Random Sequences and Processes (Springer, New York, 1983). ,‘:‘."n‘.¢
‘..:Q.‘
€ Note that P{2v > Jo(E)Y =1 - F (J,(§)/2), where F(Y) is given by fq. ,}ﬁqs
U
OF e
%It is not an innocent or obvious procedure. The limitations of such an ~,.
approximation belong to the elasticity theory and will be discussed else- &
where, otk
e
O The relation of the dimensionless function U to the function V introduced eyt
. . §%: A%t
in Ref. 1, Sec. IV is U= rV, :
n o
This result can be found in the original papers M. Kac, in Proceedings of the '_‘-__'
2nd Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, s ¥
1950, edited by J. Newman (Univ. of California Press, Berkeley, 1951) - .’_,’ Tt
regarding Eq. (6a), and E. B. Dynkin, Ukranian Math. J., Vol. 6, 21 (1954) ‘ﬂ‘

(in Russian). ™
L : MY . . T
More precisely, P(X) is a density with respect to X,. L
u-'%.~

e

.8
e
G
NS

~
]
k)

e
AR
KA

L'§'> ;

%))

L
R

@
sy
e

A

.':\"\.
- Il“.n_,‘
F o

WA
\..\‘R

\n
) T n I P T T U I S R T
;W:cx‘_:.&:r-:{)}?ﬂ:‘(&u -~ ..’ < -. ~._ S -\_x .a.. - , e ,\'_.x_._. ..;._-\"_x, 4.\_\ \_\.\ ._-‘.\_. NN



(HATATTAR L PR LY VRV UAY ALY A A U VTV RN PO AR A R NNKT ANE AN M OO W R W AT R AN 't‘l'!".;:'.".:
(

34 s VY. i

t t t £

A4

=
<um
L
ey
ey
Ji"l{/’i

x

-n
e
o
-
(1]
—

»x,

i

Ps
Kj’.

:‘"’"
Xy

T N N



CHAPTER III1

DETERMINATION OF RANDOM STRENGTH FIELD PARAMETERS

FROM CRACK ARREST EXPERIMENT

R. Dearth, H. Aglan and A. Moet
Department of Macromolecular Science
Case Western Reserve University
Cleveland, Ohio 44106

and

B. Kunin and A. Chudnovsky
Department of
Civil Engineering, Mechanics, and Metallurgy
University of Illinois at Chicago
Chicago, Illinois 60680
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R
Introduction E:E.;-
A probabilistic model to extract the strength field parameters, y* and a, of a :_:_?,
material during brittle crack formation has been developed [1,2]. For a crack arrest 211
experiment the probability of crack penetration depth f(X) at a displacement (3) is !
expressed as rs
F00= [ #0) 1x15) db %

° o £
where f(3) is the probability density of the displacement at the grips. Both the f(X) and .x y
f(5) can be obtained from the results of a crack arrest experiment. The function f(XI5) is :.
a conditional probability density of X for a given value of 5. This function is expressed ;u‘ ]
in the form ’.".
f(X15) = dF (XIS)/dX ) i

2

where a -‘i
F(Xib) = 1-exp | - j:mexp -(r(1 +i) J°2(xi 6)) i:l

ot ] 0 3)
where ['(1 + 1/a) is the Gamma function, r,, is the radius of correlation of the material ; !
and J,(x:3) is the energy release rate for a straight horizontal crack of the same depth ,':E'i
x. vand a are the strength field parameters which characterize the resistance of the :? X
material to brittle crack formation. .1
The utilization of this model involves a minimumization technique to equate or :
minimize the difference between the experimentally found f(X)q, and the theoretically x
calculated f(X)y,. To obtain the theoretical function f(X),, a value of the radius of ..}: ¢

correlation r,, for the material, has to be found and incorporated into Eq. 3. Different

e

P&I
h

values of y* and «a should be tried in the minimumization program until f(X)y, = f(X)ay.
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The values of y* and a at which the equality condition takes place are the strength field

parameters of the material.

In order to demonstrate the utility of this theory an experiment on a model

‘:: material (PMMA) was conducted. This chapter oilines experimental and analytical y

techniques to determine the strength field parameters, y* and a, of PMMA.

2. Experimental Procedures

The material used in this study is PMMA ("plexiglas M") manufactured by the

4 Rohm and Haas Company(Philadelphia) in the form of 6 mm thick sheets. The A
reported tensile strength of this grade PMMA is 68.95 x MN/m2 with a modulus of
elasticity of 3.1 GN/m?2.

Twenty-five identical tapered double cantilever beam specimens were

machined to the dimensions given in Fig. 1. A saw cut notch of 6 mm was machined

into the specimen. The stress intensity factor of this geometry is given by [3]

> . )= E8 k(x)
% b7 5t @

and .
- *f
2.98 - A +0.7 for A <06 X
i 1 10.3(r +0.833) §
2 [0.3(x+0.833)

0.537+ 2.17((‘ “)/(1 _A))

1 1
wz(1-2)2
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and
308,9|33322+2082 | 0350, 4 464im (»+.833)- 1.652
: Ar+osag P08
fora<0.6
S(X) =
: 4.709(41-2) | 4.662 , pecin(1-2)+11.187

(1- ADZ 1-2
forn>0.6
where A = X/W and W is the specimen width measured from the load line.

A razor blade was inserted into the root notch to a depth of 0.5 mm. The total
length of the initial notch X, was 6.5 mm. The experiment was conducted on an
Instron 1125 testing machine. The sample was first preloaded to 50 N to properly
align the sample and remove any slack in the loading assembly. A monotonically
increasing load at a cross-head rate of 0.5 mm/min was applied until the crack jumped
from the tip of the razor notch. Immediately after the crack jumped, the cross-head was
stopped. At this point, a finite amount of load remained on the specimen due to the
remaining ligament. Once this load stabilized, the load was reapplied until failure
occurred.

Fractographic analysis was conducted on the fracture surface of the specimen
using optical and scanning electron microscopy. From this analysis the crack arrest
lengths were measured and elementary fracture events which can be employed as a
candidate radius of correlation were identified.

Analysis of the crack diffusion requires the tracing of the twenty-five crack
trajectories. One half of each broken specimen was properly aligned and analyzed
using a Bendix linear profile system. The crack trajectory along the middle of the
fracture surface was traced for each specimen, and magnified 50 times vertically and §
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times horizontally. This is in order to enhance the diffusive features of crack

propagation.

3. Resuits

The results of the present experiment consist of three parts. These are
a) Fracture Mechanics of Crack Arrest, b) Fractographic Analysis and c¢) Crack
Diffusion Analysis.

a) Fracture Mechanics of Crack Arrest

A typical load displacement curve is shown in Fig. 2. The grip displacement 5 is
measured from zero, along the displacement axis, to the point at which the load drops
sharply. The values of 5 for the twenty-five specimens range from 0.3 mm to 0.6 mm.
The histogram representing the probability density of the grip displacement f(5) is
shown in Fig. 3. The crack arrest length X, also ranges form 10 mm to 40 mm. A
histograrﬁ representing the probability density of the crack arrest lengths f(X) is shown
in Fig. 4.

The energy release rate for a straight horizontal crack of the same depth as that
of a corresponding diffusive crack is expressed as

2

K
Jo= =4
E (5)

where Kj is obtained from Eq. 4. The displacement of the grips 5in Eq. 4 has been

taken as the average value. The effect of Poisson’'s ratio due to plane strain
contribution (less than 10%) was neglected. The value of J,, for the specimen as a

function of the crack depth X is plotted in Fig. 5 for the purpose of illustration. An
average value of J, = 2y(G) = 363 J/m2 was obtained for this grade of PMMA. This

value agrees reasonably well with those quoted in the literature; 330 J/im2 [4] and
400 J/m? [5).
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b) Fractographic Analysis
A reflected light micrograph of the fracture surface is displayed in Fig. 6. Three
distinct regions are evident; “ribs”, “mirror" and ‘river bed” are observed. These
fracture surface features have been previously identified [6-8). SEM examination of
the rib region reveals that the distance between the two consecutive ribs is almost
constant (0.1 mm) for all specimens as shown in Fig. 7. Hence, this dimension

appears as a reasonable candidate for the radius of correlation called upon by Eq. 3.

c) Crack Diffusion Analysis

A trace of the twenty-five crack trajectories superimposed on the specimen
geometry is shown in Fig. 8. The trajectories exhibit both a deterministic forward
‘movement” due to the applied stresses and fluctuations in the y direction due to the
varying strength field. This is very similar to Brownian diffusion paths, in which
particles make forward movement due to a concentration gradient with random
fluctuation along the way. Hence, the variance of the distribution should increase
linearly with the crack length X (time in Brownian motion). In Fig. 9 the variance of the
Y distance of the trajectories is plotted versus the corresponding crack length X. The
plot is a good linear fit. The slope of this line is the diffusion coefficient, D, which
reflects the tendency of crack trajectories to deviate from the X axis. This type of
analysis has previously been used for a Keviar polyester composite [9]. Evaluation of
D uniquely determines the set of all possible crack trajectories. It is found that the
value of the diffusion coefficient for this material, using the present geometry and
loading conditions, is 4.22 mm. This difussion coefficient will not be utilized in the
present theoretical treatment; being a zeroth approximation, but will be used in further
studies.
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E 4.  Theoretical Considerations *
‘ The outcome of the experiment, described in Section 3, is a pair of random f
é variables: the displacement at the grips, 5, at the instance of crack jump and the crack ! .«
:: arrest depth, X, after the jump. d
| The joint probability density of 5 and X is given by: '
'3 X, 8) = #5) - £(X) (6)
i'. where f(3) is the probability density of 5 and f(XI5) is the conditional probability density ‘,
| of X, for a given value of 5. .
The distribution of 3 is controlled by the local conditions at the notch tip. This is '
;: approximated by a normal distribution, as is suggested by the experimentally ;
| observed distribution (Fig. 3).
: The theoretical model provides the conditional probability distribution of crack ‘:
: arrest depths, X, for a given displacement  at the grips. Namely, the corresponding "
' conditional distribution function HXI5) is written as, .
- py
,f f(x6) = 1- f exp {-fxu(x, w(x) 1503} du:(D) (w) ,
< " s fo (7) 4
¥ Recall that the relationship between F(XI5) and the conditional probability density x
(- function, f(X®), is 3
4 #(X15) = dF (XI6)/dX (8)
i Here, in Eq. 7, the functional (outer) integral represents averaging over the :
j space 2 of all possible crack trajectories w beginning at the notch (X). The
j exponential term, which is averaged, represents the probability that the crack
) penetrates to a depth of at least X, if it ‘chooses” a particular path y = w(x). The N
: parameter r, is the correlation distance of the random strength field y. The function :
f U(x, w(x)id) dx/ro represents the probability of crack arrest between depth X and :
2 X+dX, provided that the crack "“chooses” to propagate along y = w(x). This function U b
; 3
: |
) ‘
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Ulx, w60 13) = exp ( r(1 + % ) Jx. :(30: 6)) ©) M
4

where I (1+1/a) is the gamma function, J(x, w(x); 3) is the energy release rate for a iho)
crack that reaches the depth X along a path w (for a given displacement 5 at the grips), oot
and y*>0, a>0 are the strength field parameters to be evaluated. The meaning of y* ey

being, the average value of the y-field, that is assumed statistically homogeneous. The L

term dux(D) (w) in Eq. 7 is a Wiener Measure [1]. VY,
Thus, the joint probability density function for X and 8 depends on the
parameters y* and a, i.e., f(X,5) =f(X,5; y*, a). Blgthy

The probability density function describing the distribution of crack arrest % \
depths, is also needed. This is

£y, a) = f HX5; v.a) B

= [ tot(x®; v, o) dd =
fo by o (10) Fid

The parameters y* and a, can now be found by “comparing” the theoretical
distribution of crack arrest depths given by Eq. 10, to the experimental distribution,
using the least square fit method (a version of the maximum likelihood principle).

The functional integral in Eq. 7, through which f(X; y*, a) is ultimately expressed, e
can be evaluated by different approximations. ey

The zeroth approximation is the one which approximates the energy reiease "EIPY
rate J(x, w(x); 8) in Eq. 9, for a crack that follows a path w to a depth x by the energy AT
release rate J,(x; d) for a straight horizontal crack of the same depth x. The resulting oy

expression for the conditional distribution function of the crack arrest depths F(XR) is o
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now,

X

F(XB) = 1-éxp - exp -(1‘(1+_)

Xo (11)

5. Data Analysis
The experiment yielded twenty-five pairs of values; X;, §;, i = 1,...,25 (X; is the

crack arrest depth in the i-th specimen and o; is the displacement of the grips at the

instance of the crack jump in the i-th specimen).
First, the points (x;, 5;) were placed in the X, 3-plane, Fig. 10. Two points were

excluded from the set of twenty-five due to their general non-conformity with the
remaining points, resulting in a total number of twenty-three experimental points.

The histogram of the probability density of 5 was approximated by a normal
distribution using the least square fit.

2
() = 1 oxp|- 0=
avan 24 (12)

where <3) =

23

Both the histogram and the normal distribution fit are shown in Fig. 11. The normal

1
231

distribution is used as a matter of convenience. In what follows, the histogram could
have been used directly; a step-function form of the probability density function for 5.
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The “Griffith” y (G) was determined from the equation

2y(G) ! Z 23J0(Xg6-)
23 i=1 (13)
This is a natural choice for the initial value of 2y* in an interative algorithm of finding
the least square fit values v'sit, agt- A value of 2v(G) was found to be 363 J/m2 and
used as an initial value for 2y*.

The experiment comprises 23 specimens. This is a relatively small sample to
construct a detailed histogram of the crack arrest depth. Obviously, the histogram in
Fig. 4 is not sufficiently adequate. Hence, a more tedious procedure was used. The
range of crack arrest depth (11-39 mm) was subdivided into seven intervals, 4 mm
each. Every data point was assigned a weight 1/23. This weight was distributed
homogeneously over an auxiliary 4 mm interval centered at the data point, i.e., the
density of an individual point is

5‘3];4‘ (m 1)
Therefore, the weight of each point is subdivided between two adjacent intervals. The
total weight accumulated in every one of the seven intervals yields the histogram
value.

Differentiating the function F(XI3) in Eq. 11 with respect to X given rise to the
conditional probability function f(xI5). For different initially assumed values of y* and «
(ro is constant = 0.1 mm), the theoretical values of f(Xi5) were obtained. The
probability density function of crack arrest depth f(X) was then obtained from Eq. 10.

Finally the Levenberg-Marquardt alogirthm of non-linear least squares fit was
applied to match theoretical f(X) to its experimental counterpart (histogram of Fig. 12).
Only one solution was found, names 2y* = 47.6 J/m2 and a = 0.64. The theoretical
probability distribution f(X) together with the experimental histogram (Fig. 12) are
shown in Fig. 13.
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It is noteworthy that the average value of J, at the crack arrest point (360 J/mz)

falls within the range of values reported in the literature for PMMA [4,5].

In the present model in order for the crack to be arrested at the point X, but not
before, means that J4 should exceed 2y at all points prior to X. It follows that all peaks
of the y-field ought to be lower than J prior to X. This implies that the average value of
y* of the field should be lower than the value of J at X. This is schematically illustrated
in Fig. 14. The strength field-y is random as illustrated schematically by the vertical
lines. The average strength field is 2y* which is obtained from the probabilistic model.
The solid circles in Fig. 14 are points of crack arrest. It is noticed that these conditions
occur at higher values of strength field than the average 2y*.
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Fig. 5 Energy release rate versus crack length for the tapered specimen
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Fig. 6 Fracture surface after tensile fallure of a
tapered double cantilever specimen
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SEM micrograph of the rib region at different crack lengths
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